Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments.

نویسندگان

  • Anniet M Laverman
  • Thibaut Cazier
  • Chen Yan
  • Céline Roose-Amsaleg
  • Fabienne Petit
  • Josette Garnier
  • Thierry Berthe
چکیده

Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations

For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measuremen...

متن کامل

Linking DNRA community structure and activity in a shallow lagoonal estuarine system

Dissimilatory nitrate reduction to ammonium (DNRA) and denitrification are two nitrate respiration pathways in the microbial nitrogen cycle. Diversity and abundance of denitrifying bacteria have been extensively examined in various ecosystems. However, studies on DNRA bacterial diversity are limited, and the linkage between the structure and activity of DNRA communities has yet to be discovered...

متن کامل

The effects of crude oil on marine microbial communities in sediments from the Persian Gulf and the Caspian Sea: A microcosm experiment

Changes in the microbial community in response to catastrophic oil spills in marine and fresh water environments have been well documented. Molecular methods provide tools for analyzing the entire bacterial community, covering also those bacteria that have not been cultured in the laboratory. In this study, four different microcosms were set up containing sediments collected from the Persian Gu...

متن کامل

The effects of crude oil on marine microbial communities in sediments from the Persian Gulf and the Caspian Sea: A microcosm experiment

Changes in the microbial community in response to catastrophic oil spills in marine and fresh water environments have been well documented. Molecular methods provide tools for analyzing the entire bacterial community, covering also those bacteria that have not been cultured in the laboratory. In this study, four different microcosms were set up containing sediments collected from the Persian Gu...

متن کامل

Rapid removal of nitrate and sulfate in freshwater wetland sediments.

Anaerobic microbial processes play particularly important roles in the biogeochemical functions of wetlands, affecting water quality, nutrient transport, and greenhouse gas fluxes. This study simultaneously examined nitrate and sulfate removal rates in sediments of five southwestern Michigan wetlands varying in their predominant water sources from ground water to precipitation. Rates were estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental science and pollution research international

دوره 22 18  شماره 

صفحات  -

تاریخ انتشار 2015